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Abstract: Molecular hydrogels have been widely explored in various biomedical applications, such as cell culture, 
tissue engineering and drug delivery. Peptide-based hydrogel nanoparticles represent a promising alternative to cur-

rent drug delivery approaches and cell carriers for tissue engineering, due to their encapsulation stability, water solubility and biocom-
patibility. This review focuses on recent advances in the use of self-assembling peptide nanogels for applications in drug delivery. We 

firstly introduce a self-assembly mechanism for small molecules used in the peptide hydrogel, and then describe recent methods for con-
trolling the assembly of molecular hydrogelations. A particular emphasis is placed on recent advances in the use of different types of pep-

tide hydrogels as drug delivery carriers. Lastly, the current challenges and future perspectives for self-assembling peptide hydrogels in 
drug delivery applications are discussed.  
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1. INTRODUCTION  

 Hydrogels consist of hydrophilic polymers, which contain a 
significant amount of water, while maintaining a distinct three-
dimensional self-assembled networked structure [ 1 - 3 ]. Many hy-
drogenating molecules can be assembled, under specific conditions, 
into nanogels through the self-assembly of small molecules. In the 
last two decades, molecular hydrogels have attracted considerable 
attention as promising biomaterials for various biomedicine and 
nanomedicine applications such as cell culture [4, 5], tissue engi-
neering [6, 7], drug delivery platform [8, 9], cancer therapy [10, 
11], and regenerative medicine [12, 13]. Until now, several systems 
of molecular hydrogelators have been reported, including sugar-
based molecules [14, 15], peptides [16-20], and amino acid deriva-
tives [21-23] et al. Among these mentioned gelation sys-
tems peptide-based nanogels are particularly attractive as molecu-
lar building blocks due to their versatile synthesis, excellent gela-
tion ability, good biocompatibility and bioactivity [24]. Self-
assembling peptides can adopt a huge diversity of 2D or 3D archi-
tectures, and also provide necessary control over self-assembly 
through physicochemical factors such as pH, temperature, ionic 
strength, enzyme, solvent and light [25, 26]. This feature article 
summarizes the recent developments of a novel method of molecu-
lar hydrogelations, by the mechanism used for molecular hydro-
gelations and the application of peptide hydrogels as drug delivery 
vehicles. 

2. MECHANISM FOR MOLECULAR HYDROGELATIONS 

 Considerable attention has focused on peptides that might be 
involved in the regulation of a multitude of physiological functions  
 

*Address correspondence to these authors at the Institute of Bioengineering 
and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore; Tel: 

+65-68247140; E-mail: lqgao@ibn.a-star.edu.sg 
Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiol-

ogy, Brigham and Women's Hospital, Harvard Medical School, Boston, 
MA, 02115, US; Tel: 1-631-3274855; E-mail: junwu1@mit.edu 
#These authors contributed equally to this work. 

in vertebrates and mammals, including humans [27-30]. Peptide 
molecules can form specific secondary, tertiary and quaternary 
structures, which provide unique opportunities for the design of 
nano-materials that don’t exist with traditional organic molecules 
and polymers. Additionally, various chemical functionalities found 
in naturally occurring and artifical occurring amino acids give the 
ability to self-assemble into different forms of nano-materials with 
desired structures and chemical functions [31]. With developments 
and a better understanding of the relationships between the se-
quences and structures, it is now possible to design new protein and 
peptide based materials [32, 33]. By virtue of rational design, vari-
ous types of biomaterials can be formed via self-assembly, ranging 
from nanometer to microscale materials [34-39]. The properties of 
self-assembling peptides can be easily designed, synthesized and 
modulated, by controlling the secondary structural motifs of pep-
tides (Fig. 1) or their hierarchical self-assembly process (Fig. 2). 

 Currently, a well-designed and synthetic peptide can form hy-
drogels, which allows the development of a new platform with the 
ability to fine-tune the properties of self-assembled structures with 
the assistance of external stimuli. The high successful rate for these 
kinds of self-assembled materials is due to the fast development and 
deep understanding of the molecular interactions and the require-
ments for such interactions. 

 Interestingly, there has been an increase in the reported number 
of peptide based self-assembling materials (fibres, tapes, sheets, 
wires ribbons and hydrogels), which have been applied in many 
areas [40-49]. There are four main factors that are important to self-
assembly of small molecules: (a) hydrophobic interaction, (b) -  
stacking, (c) hydrogen bonding, and (d) electrostatic interactions 
[50-55]. 

 Peptide can meet all the requirements for self-assembly via self-
aggregation process by adjusting the peptide sequences. Hydrogela-
tion via self-assembly is a hierarchical process, and is shown in Fig. 
(2). Usually, small peptide molecules in solution can form a spe-
cific secondary structure, and then self-assemble to form nanofibres 
when treated by appropriate stimuli or suitable physical conditions. 
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As a result, thicker and longer fibres in three-dimensional space can 
gradually form, thus leading to a fibrillary network (Fig. 2). Water 
molecules can be entrapped in these 3D networks of peptides, 
which resulting in a self-supporting hydrogel. The properties of the 
hydrogels can be adjusted by changing the peptide sequence, thus 
making the final synthetic materials tunable. 

 To better design oligopeptides as to generate hydrogelators, it is 
necessary to understand the mechanism involved in gel formation. 
Although it is difficult to accurately predict the likelihood of the 
peptide’s ability to form a hydrogel, numerous existing examples 
which have either failed or succeeded to form gels can provide 
useful information for the design of peptide based hydrogels. 

2.1. Hydrophobic interactions 

 Peptides can form hydrogels, or many other well-ordered 
supramolecular structures, by multiple non-covalent interactions. 
Many cases have shown that peptide amino acids can easily form 
hydrogels when they are conjugated to a large aromatic group. It 
has been emphasized that aromatic interactions play a very 
important role in the hydrogelation (especially for LMW gelators), 
which can be indicated by comparing the different chemical 
conjugates of similar peptides or amino acids. For example, 
although it was reported that Fmoc-Tyr can easily undergo self-
assembly and form hydrogel [56], change of the Fmoc group with 
non-aromatic tert-butyloxycarbonyl (Boc) protecting group or the 
smaller aromatic group Cbz will fail to form hydrogels [57]. The 
same problems also happen to Fmoc-Phe [58] and Fmoc-protected 
pentafluorophenylalanine (Fmoc-F5-Phe) [57] when Fmoc 
protection groups were changed into Cbz. Xu and co-workers [58] 
rationally designed hydrogelators based on aromatic-aromatic 
interactions. They reported that phenylalanine derivatives, com-
posed of Phe conjugated to an aromatic group (fluorenyl, naphthyl, 
naphthalenoxyl, or cinnamoyl), were efficient hydrogelators. 
Interestingly, they identified the cinnamoyl group as the smallest 
aromatic group that provided sufficient aromatic-aromatic interac-
tions for N-modified phenylalanine to become a hydrogelator.  

 Besides, Xu group also investigated whether the tetrapeptide 
(Gly-Phe-Phe-Tyr) can form hydrogels when they were capped by 

diverse aromatic capping reagents. They found that Cbz-Gly-Phe-
Phe-Tyr is a less efficient hydrogelator than Fmoc-, Nap- or PTZ-
protected Gly-Phe-Phe-Tyr tetrapeptide [59]. They also revealed 
that the minimum gelation concentration for Cbz-Gly-Phe-Phe-Tyr 
was 5 wt. %, while it was only 0.08 wt. % for Fmoc- or Nap- 
protected tetrapeptides. Furthermore, it was found that PTZ-Gly-
Phe-Phe-Tyr can form gels at ultra-low concentrations of 0.01 
wt.%. To further study the important role of aromatic groups in 
regulating the self-assembly process and influencing the structural 
and physical properties of the hydrogels formed, a library of Fmoc-
peptides was designed and investigated to elucidate their detailed 
functions [60-63].  

2.2. -  interactions 

 It was previously reported that Gly-Phe-Ile-Leu was a more 
efficient hydrogelator than Gly-Ala-Ile-Leu. To elucidate the 
contribution of aromatic residues in the self-assembly process, 
investigating how Fmoc-Tyr form hydrogels may provide us an 
answer to this question. After investigation, Xu group revealed that 
four possible modes of -  interactions may coexist to drive the 
hydrogel formation. Furthermore, one of these modes was resulting 
from the presence of the fluorenyl group overlapping with phenyl 
group of tyrosine [56]. Besides, other recent studies for the 
supramolecular structure of Fmoc-Phe-Phe [63] and the assembly 
of Fmoc-Ala-Ala [64] also indicated that -  stacking as driving 
forces plays a very important role in the self-assembly to form the 
final hydrogel structure. Furthermore, -  stacking as the main 
driven force for hydrogel formation is also proved by a molecular 
dynamics simulation experiment using Fmoc-DAla-DAla 
hydrogelator [65].  

2.3. Hydrogen bonding 

 -helix is one of most important secondary structure elements 
for protein structures, and it is usually formed by the winding of the 
polypeptide backbone into a right-handed helix with a periodicity of 
3.6 amino acids per turn. For this kind of secondary structure, the 
internal backbone hydrogen bonding is mainly responsible for the 
stabilization, which is formed between the carbonyl oxygen atoms 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Scheme for peptides self-assembly to form different secondary structures: (a) -sheet, (b) -hairpin, (c) -helix and (d) coiled-coil. Adopted from 

RSC Advances.2013; 3: 9117 [39]. 
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of residues i, with the amide hydrogen, of residues i + 4. To make 
proteins structure more stable, -helices can also pack together 
through other forces, such as hydrophobic effect and van der 
Waals’ forces. Different from  sheet structures, the hydrogen 
bonding in -helices belongs to intramolecular interaction, which 
will make it discrete building blocks [66, 67].  

2.4. Electrostatic interactions 

 Compared to the strategies mentioned above, another different 
and efficient method to facilitate hydrogel formation is based on the 

electrostatic attraction of oppositely charged peptides. One typical 
examples is that, Zhuo et al. in 2010 reported several Fmoc-
oligopeptide hydrogelators: Fmoc-Val-Arg-Gly-Asp-Val, Fmoc-
Gly-Arg-Gly-Asp-Gly and Fmoc-Lys-Lys-Arg-Gly-Asp-Lys [68]. 

 When mixing 2 of these 3 oligopeptide hydrogelators in H2O at 
a neutral pH, supramolecular hydrogels can easily form due to the 
electrostatic attraction assisted co-assembly. Besides, by virtue of 
electrostatic interactions as the main driving force, hydrogels can 
also easily form even for larger building blocks [69-72]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Representative scheme for hydrogel formation via hierarchical self-assembly process from peptide molecules. Adopted from RSC Advances. 2013; 3: 

9117 [39]. 
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2.5. Amino Acids Order 

 It was also found that the order of amino acids was of great 
importance for hydrogelation. It was proved by several typical 
examples as below that peptides failed to form hydrogels once the 
order of amino acids in the peptide sequences was changed. The 
first example was Fmoc-Phe-Gly, which can form hydrogels at at 
<1 wt. %, while peptide Fmoc-Gly-Phe failed to form gels [73]. 
This change for the hydrogelation formation could be resulting 
from the change in the self-assembly kinetics due to the presence of 
two adjacent aromatic moieties in Fmoc-Phe-Gly.Similar 
phenomenon also happened to the dipeptides between Nap-Gly-Ala 
and Nap-Ala-Gly.Nap-Gly-Ala can easily form hydrogels when 
decreasing pH, while Nap-Ala-Gly cannot form hydrogels [74]. To 
find out the real reason for different self-assembly behavior of these 
two peptides, computational methods and X-ray diffraction studies 
suggested that it could be due to the variation in conformational and 
hydrogen bonding preferences between these two peptide 
sequences.  

 The importance of the amino acids order for the hydrogel 
formation was also confirmed by Hamley and his co-workers in 
several studies [75, 76]. 

3. METHODS FOR MOLECULAR HYDROGELATIONS  

3.1. Ultrashort Peptide Hydrogels from Protected Single Amino 
Acid  

 So far, Xu group was the first one to report the fibrillation and 
subsequent hydrogelation by using Fmoc protected single amino 
acids [77]. In this study, it was reported that hydrogelation of a 
mixture of Fmoc-Lysine and Fmoc-Valine could successfully 
formed under systematic basification. Besides, the same group also 
developed new strategies to incorporate external stimuli for the 
hydrogel formation using Fmoc protected amino acids [77-82].  

3.2. Short Peptide Hydrogels Based on Small Peptides 

 During the history of peptide hydrogel developed as biomateri-
als, Janmey and her coworkers firstly reported that Fmoc protected 
dipeptides derivatives could functionalize as hydrogelators. For 
example, Fmoc-Leu-Asp, and its analogues Fmoc-Ala-Asp and 
Fmoc-Ile-Asp, can successfully form hydrogels [83]. Besides, other 
dipeptides Phe-Phe and its derivative peptides (Boc-Phe-Phe-
COOH, Z-Phe-Phe-COOH and Fmoc-Phe-Phe-COOH peptides) 
self-assemble into tubular and amyloid-like structures [84-86]. 

 Different from dipeptides systems, tripeptide based hydrogel 
systems were not so that many [87-90]. One of typical example was 
that Banerjee and coworkers successfully identified three self-
assembling, pH sensitive tripeptide based systems, which can suc-
cessfully form nanofibrillar networks at basic pH values (between 
pH 11.0 and 13.0) with a common peptide structure of Boc-Phe-X-
Phe-OH, where X = Val, Leu, Phe [87]. 

3.3. Long Peptide-Based Hydrogels 

3.3.1. Hydrogels Based on -Sheet Forming Peptides 

 The -sheet or -pleated sheet is another form of regular secon-
dary structures in proteins.  

 In order to better design a peptide containing minimal complex-
ity, three simple criteria was summarized by Boden and his co-
workers as below: the most important one belongs to cross-strand 
attractive forces (hydrophobic, electrostatic and hydrogen-bonding) 
between their side chains; the second one is lateral recognition be-
tween adjacent -strands to constrain their self-assembly to one 
dimension and avoid heterogeneous aggregated -sheet structures; 
last one is strong adhesion of solvent to the surface of the tapes to 
control solubility [91]. Besides, a theoretical model of hierarchical 
self-assembling chiral rod-like units for -sheet tapes, ribbons, fi-
brils and fibers was also proposed (for details see ref [92]). 

 Following these standards, Zhang et al. reported several inter-
esting -sheet forming peptides such as (H2N-AEAEAKAK-
COOH; Ac-NH-AEAEAKAKAEAE-CONH2; Ac-NH-AEAEAKA 
KAEAEAKAK-CONH2; can-KLDLKLDLKLDL-CONH2; Ac-
RADARADARADARADA-CONH2) [93-97]. These special kinds 
of self-assembling peptides contain periodic repeats of hydrophilic 
and hydrophobic amino acids, which can result in discrete polar and 
nonpolar faces. These short peptides (about 2.5-5 nm in length) 
with 8 to 16-residue can easily form stable -sheet structures in 
water. Furthermore, two peptides named Fmoc-Leu-Gly and pep-
tide H2N-VKVKVKVKV

D
P PTKVTVKVKV-NH2 not only self-

assemble to form stable nanofibres, but also form higher order nan-
ofibre scaffolds, which means hydrogels with extremely high water 
content [99.5 (wt/vol)% water] [95-97]. 

3.3.2. Hydrogels Based on -Hairpin Forming Peptides 

 As one of another important secondary structure, -hairpin ( -
ribbon or - ) involves two beta strands forming a hairpin shape 
[91, 92]. It was reported that Schneider and his co-workers identi-
fied a series of de novo designed peptides which can form hydrogel 
via stimuli driven folding to -hairpin and self-assembly [98-100]. 
For these peptides, a tetra-peptide is in the center with high type II’ 

-turn propensity, which is flanked by two extended strands. For 
these 2 strands, they contain an alternating arrangement of hydro-
phobic and hydrophilic amino acids to help the formation of a -
sheet structure [98-100]. 

3.3.3. Hydrogels Based on the -Helix Forming Peptides 

 Based on the structure, a supercoil (either right or left-handed) 
usually contains two or more strands of -helices [101-108]. Native 
proteins usually contain coiled-coils in the structure, and coiled-coil 
motif is also useful and important for hybrid gel formation. A typi-
cal coiled-coil usually contains seven important residue repeats, 
which are designated as ‘‘a, b, c, d, e, f, g’’ (Fig. 1d). An inter-
helical hydrophobic core is formed by the hydrophobic interactions 
between the hydrophobic residues ‘‘a’’ and ‘‘d’’ of two helices, 
which usually stabilizes the coiled-coil architecture. In positions 
‘‘e’’ and ‘‘g’’, they stand for the charged residues that contribute to 
coiled-coil stability and mediate specific association among helices.  

 It was reported that Woolfson et al. developed a new approach 
to create a self-assembled hydrogel by using the coiled-coil aggre-
gation [109]. Woolfson presented many fibrous biomaterials based 
on -helical coiled-coils, where two 28-residue peptides were de-
signed to co-assemble to form an -helical dimer with complemen-
tary sticky ends [110,111]. Rational architectural changes in the 
peptide sequences lead to the formation of hydrogels with tempera-
ture sensitivity.  

3.4. Hybrid Peptide Based Hydrogels  

 Hybrid hydrogels usually possess at least two distinct classes of 
components. For example, these 2 different classes of components 
may belong to synthetic polymers and biological macromolecules. 
To form a hybrid gel, these 2 different components are connected 
covalently or non-covalently [112].When combining two types of 
structures together, the new materials may possess unprecedented 
levels of structural organization and novel properties.  

3.4.1. From Hybrid Block Copolymers 

 Hybrid block copolymers is very important in materials sci-
ences because they can self-assemble to form many different kinds 
of nanostructured materials including vesicles, micelles, rod-like 
aggregates, and hydrogels [113]. Especially there are many litera-
tures about the self-assembly into micelles of hybrid block copoly-
mers composed of PEG and poly-amino acids for anticancer drug 
and/or gene delivery [114].  

 During these copolymers, diblock copolymers of PEG and -
sheet forming peptides are one of the typical systems which have 
been extensively studied (reviewed in Refs. [115,116]). A great 
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number of peptides, including -amyloid mimics [117,118], elastin 
mimics [119,120] and silk mimics [121-123] have been used as the 
protein/peptide block. 

 To prepare hybrid multiblock copolymers of PEG and GAGA 
peptides, people usually used step-growth polymerization. Based on 
the design structure of Bombyx mori silk, when the amorphous 
regions of the protein structure were replaced by PEG, the GAGA 
peptides assembled intra- or inter-molecularly into parallel or anti-
parallel -sheets [124]. 

3.4.2. From Synthetic Polymers and Peptide Domains 

 Compared to the strategies mentioned above, a novel strategy to 
form hydrogel could be easily achieved by virtue of the self-
assembly of synthetic polymer chains mediated by genetically en-
gineered protein domains. It has been confirmed that it is feasible to 
impose properties of a well-defined coiled-coil protein motif onto a 
hybrid hydrogel containing synthetic polymer primary chains [125]. 
For example, hybrid hydrogels were successfully formed based on a 
N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer with 
side chains terminating in iminodiacetic acid moieties charged with 
Ni

2+ 
and His-tagged coiled-coil-forming peptides (CC1 and CC2) 

through metal complexation. CC1 stands for a segment of the stalk 
region of the Drosophila motor protein, kinesin, and CC2 was a de 
novo designed coiled-coil sequence ([VSSLESK]6).  

3.4.3. From Hybrid Graft Copolymers 

 Another type of polymer architecture, which could be used for 
peptide mediated self-assembly, is the graft copolymers containing 
a synthetic polymer backbone and associative peptide grafts. As a 
typical example of such graft copolymer, it is the HPMA copolymer 
backbone and coiled-coil-forming peptide grafts [126,127].  

3.4.4. From Hybrid Star Copolymers 

 Another important hybrid copolymers are star-architecture-type 
macromolecules, which could self-assemble into 3D structures, and 
also can form hydrogels when synthesized with two 4-arm PEGS 
[128,129]. As for the first star-type macromolecule, it was reported 
and prepared by the attachment of the heparin-binding domain of 
the heparin interacting protein (HIP) to a 4-arm PEG. The HIP pep-
tide containing a N-terminal cysteine (CRPKAKAKAKAKDQTK) 
could react via Michael’s addition with vinyl sulfone-modified 4-
arm star PEG.  

3.4.5. Other Designs of Hybrid Hydrogels 

 Besides of the methods mentioned above, there are still other 
hybrid copolymers for forming hydrogels. As is well known, pep-
tide/protein segments (within crosslinks) were usually used to in-
duce degradability into hydrogels [130-132]. Due to the different 
degree of swelling and the size of the particular enzyme, the degra-
dation usually proceeds through either in bulk or as surface erosion. 
As a result, protein grafted PEG hydrogels, which mimicked the 
natural extracellular matrix, were prepared via a three-step process. 
Firstly, an artificial protein was produced by genetic engineering. 
After that, it was grafted by the PEG diacrylate, and lastly the acry-
late groups were photopolymerized, and finally formed hydrogels. 
The protein sequence contained the RGD bio-recognition peptide 
and two plasmin degradation sites. These hydrogels are versatile 
biomaterials that permit cell attachment and proteolytic penetration 
[133]. If we want to modify design of materials to permit 3D cell 
migration within the hydrogel matrix, it could be achieved via the 
reaction of cysteine thiols (inside the protein structure) with vinyl 
sulfone moieties of end-functionalized PEG [134,135]. 

4. MOLECULAR PEPTIDE HYDROGELS FOR DRUG DE-

LIVERY  

 Molecular hydrogels, especially peptide-based hydrogels have 
been widely used in the biomedical field including scaffold for cell 
culture and therapeutic molecular carriers for drug delivery [136-
138]. Therapeutic molecular carriers can be covalently bound to 

hydrogels and released from the gel via hydrolysis of chemical 
bonds causing degradation of gels. Besides using hydrogels as de-
livery system for drug transportation to a target, molecular hydrogel 
and/or its derivatives has been reported to act as carrier-free self-
delivery therapeutic agents [139]. In this section, we will focus on 
peptide hydrogel application as a therapeutic drug delivery tool or 
self-delivery therapeutic agents for therapy.  

4.1. Peptide Hydrogel as A drug Delivery Tool  

 Hydrogels with a capacity to absorb and hold water within a 
porous, swelled structure make it a great candidate as a material for 
many biomedical applications [140]. Peptides have emerged as 
promising molecular candidate for hydrogel-based biological ori-
ented applications especially as drug delivery system due to their 
broad range of physical properties as well as chemical adaptability 
[141]. Unlike traditional polymer hydrogels, peptides may self-
assemble to form highly ordered structures with their unique set of 
chiral amino acid building blocks. The self-assembly reaction is 
governed via the van der Waals' and electrostatic interactions, hy-
drogen bonding, and the hydrophobic effect in a controlled manner. 
Soukasene et al. generated self-assembling peptide amphiphilic 
(PA) nanofibers to encapsulate the hydrophobic chemotherapy 
agent camptothecin (CPT) [142]. The hybrid drug delivery system 
of incorporating CPT to PA had been found to improve the solubil-
ity of CPT to 50-fold and led to inhibited tumor growth in the 
mouse orthotopic model of human breast cancer. Accordingly, Mao 
et al. reported on the creation of a peptide drug delivery hydrogel 
tool loading with two complementary anticancer drugs used for 
chemotherapy for the first time (Fig. 3) [143]. The stability of anti-
cancer agents was greatly enhanced by loading the agents on hy-
drogels to which these drug molecules can have a controlled re-
leased via ester bond hydrolysis. This system shows potential to be 
used for the long-term controlled release of anti-cancer drugs. 

 Koutsopoulos et al. designed and synthesized a self-assembling 
peptide hydrogel fiber in nanoscale for controlled release of func-
tional protein [144]. The biocompatibility of the self-assembling 
peptide hydrogel based delivery system did not alter the protein 
conformation structure and its functionality. It displayed great po-
tential as a molecular carrier for functional therapeutic biomolecu-
lar delivery and controlled release. Additionally, the amphiphilic 
peptides could form stable nanowebs, which had ability to release 
incorporated hydrophobic drugs slowly, as well as accelerate ani-
mal hemostasis [145]. Ruan et al. prepared a 9-residue peptide (N-
Pro-Ser-Phe-Cys-Phe-Lys-Phe-Glu-Pro-C) formed fishnet-like 
nanostructures, which could encapsulate pyrene drug and release 
pyrene to liposomes slowly from coated microcrystall, and thus has 
potential as a drug delivery tool. Curcumin could be encapsulated 
into hairpin hydrogels as an injectable agent for localized delivery 
[146]. In vitro experiments, performed on a medulloblastoma cell 
line, indicated that the encapsulation of curcumin within the hydro-
gel had little adverse effect on its bioactivity. Matson et al. investi-
gated the potential of high aspect ratio peptide nanofibers for drug 
delivery [147]. They synthesized different self-assembling peptide 
amphiphiles (PAs) with a lysine 3-aminederivatized hydrazide, 
which was located at various positions along the peptide sequence 
backbone C16V2A2E2. These compounds were found to have the 
ability to release prodan with a near zero-order release profile, and 
their half-life was dependent on the location of the fluorophore at 
the PA sequence. Wang et al. evaluated the RGD peptide based 
hydrogel biocompatibility in posterior segment of the eye, and 
demonstrated that the biomaterial could potentially be used as a 
sustained drug delivery tool [148]. Clinical results indicated that the 
RGD peptide based hydrogel exhibit great ability to tolerate the 
vitreous cavity well. It could also disappear from the injection sites 
progressively, exhibiting excellent biocompatibility in the rabbit 
eyes’s posterior segment, and thus can be considered a suitable 
biomaterial to deliver agents to the choroid and retina.  
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4.2. Small Molecular Peptide Hydrogels as Drug Delivery Sys-
tems 

 Small peptide hydrogels could possess the similar advantages as 
normal peptide hydrogel systems and are highly attractive recently, 
because of their relative low cost and user controlled-manipulability 
[149]. The very first report about an amino acid based hydrogel 
occurred almost a century ago. Since then, people have developed 
new concepts involving small peptides, as well as their specific 
biomedical applications, especially as a drug delivery tool. Qin et 
al. synthesized L-glutamic acid dendron based on the shrinkable 
Metallo peptide hydrogel and investigated its ability for the step-
wise release of drugs [150]. The novel hydrogel displayed selective 
shrinkage in the presence of positively charged species and main-
tained gel status in the presence of negatively charged species. This 
shrinkable peptide hydrogel could delivery drugs in a stepwise 
manner, where the negatively charged drug was released first and 
the second agent was released later upon a pH trigger. Baral synthe-
sized a novel tripeptide-based hydrogel which was sustainable at 
native physiological pH and temperature (Fig. 4) [151]. This prod-
uct was thixotropic, injectable and had been employed for the in-
corporation and controlled release of antibiotic vancomycin mo-
lecular and vitamin B12. Ischakov et al. developed a scalable proc-
ess for the formation of peptide-based hydrogel nanoparticles, 
which could be employed as effective drug delivery carriers, from 
aromatic dipeptide building blocks [152]. Encapsulation doxorubi-
cin (Dox) and 5-flourouracil, within the hydrogel nanoparticle ma-
trix, could result in the controlled release of therapeutic agents 
based on their chemical structure, molecular weight and surface 
property.  

 Yang developed a novel small peptide hydrogel system with a 
folic acid (FA)-Taxol conjugate [153]. These peptide hydrogels 
were generated via sulfide bonds reduction, using glutathione 
(GSH), and could achieve Taxol release via ester bond hydrolysis to 
inhibit tumor growth. Small peptides could also be conjugated to 
hydrogel structure to achieve excellent drug delivery ability. Qin et 
al. introduced a route to modify small peptide-decorated polymeric 
nanoparticles (NP), which can delivery anticancer drugs such as 
doxorubicin (Dox) for cancer therapy. The incorporation of the 
nucleolin-targeting F3 peptide could significantly enhance the in-
ternalization of co (CEA-AAm) Nano Particles (NPs) toward the 
drug-resistant NCI/ADR-RES cancer cell line. In addition, im-
proved loading amount and controlled release of doxorubicin were 

gained [154]. Ashley et al. discovered a small peptide modified 
hydrogel drug delivery tool. Such system had tunable drug release 
properties [155]. They used -eliminative linkers to co-combined 
cross-link PEG hydrogels and tether drugs, and, and illustrated 
controlled drug rate release as well as hydrogel erosion rates in long 
time. Such -eliminative linkers could extend the half-life to regu-
late polymer degradation, and thus the system can be controlled to 
release the drug before gel undergoes complete degradation. 

4.3. Sugar Functionalized Peptide Hydrogel as a Drug Delivery 
System 

 The majority of peptide hydrogels deliver drugs via passive 
targeting, and therefore it is desirable to develop a peptide hydrogel 
delivery system for actively targeting specific cells with enhanced 
performance of delivery and little side effects [156]. For this pur-
pose, using “ligands” (which can be incorporated into various pep-
tide systems) as moieties to facilitate drug targeting has gained 
intensive attention [157]. Sugar is one of the most widely used 
ligands that can be applied to drug delivery receptor targeting. Be-
sides drug targeting, association of sugar to peptide hydrogel carri-
ers could also offer different beneficial properties such as biostabil-
ity, enhanced solubility, bioadhesive properties, as well as reduced 
toxicity for drug delivery. Xu et al. constructed a therapeutic glyco-
peptide hydrogel containing an N-fluorenyl-9-methoxycarbonyl 
phenylalaninephenylalanine-aspartic acid (FMOC-Phe-Phe-Asp) 
sequence and a glucosamine moiety used as a new substitute for 
proliferation inhibition drugs. Such new drug could be used to re-
tard postoperative scar formation (Fig. 5) [158]. Within 21 days 
after filtration surgery, the intraocular pressure (IOP) in a rabbit’s 
eyes was low after the administration of such therapeutic sugar 
modified peptide hydrogels. Such glycopeptide hydrogels show 
similar therapeutic effects as traditional antiproliferative drug. Im-
portantly, intraoperative administration of such novel therapeutic 
glycopeptide hydrogels could prevent the toxicity side effect of 
antiproliferative drugs against tissues, which shows that these hy-
drogels could make a promising potential utilization for glaucoma 
treatment. Tian et al. detailed the preparation and in vitro investiga-
tion of novel amphiphilic glycopeptide functional copolymers sys-
tem as drug delivery tool for controlled drug release [159]. They 
aggregated into nanoparticles loaded with therapeutic agents in the 
presence of doxorubicin, exhibiting controlled release characteristic 
in water environments. These copolymers, specifically the lactobi-
onolactone grafting ones, offer opportunity to be served as the tar-

 

 

 

 

 

 

 

 

 

 

Fig. (3). Combination of two complementary anti-cancer drugs confers molecular hydrogels used as a drug delivery system, Adopted from Chem. Commun. 

2012; 48: 395 [143]. 
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get sites for the delivery system of drug release in controlled man-
ner. Stohr et al. created glyco-NCAs by combining peracetylated 
sugars using a thiourea linker to the -amino group of -Boc-lysine 
and -Z-lysine [160]. The peptide hybrid hydrogels were shown to 
be specifically up taken by human T lymphocytes, demonstrating 
great potential as a drug delivery system. Xu et al. reported on the 
preparation of glycopolypeptide nanoparticles (GPNPs), with Mn 
doped ZnS quantum dots (QDs), which formed a hybrid shell/core 
nanostructure through the initiated N-carboxyanhydrides polymeri-
zation on surface and condensation polymerization with car-
boxymethyldextran on QDs [161]. They also investigated the im-
mobilization and release characteristics of ibuprofen on the 
nanoscale drug delivery system. It was found that the GPNPs dis-

played high loading capabilities, as well as the controlled release 
characteristic in medium. By incubating HEK293T cell lines to the 
nanoparticles, the cellular toxicity of the GPNPs was also investi-
gated, and low cytotoxicity was observed. Such hybrid structures 
appeared to be a great promising candidate system for targeted drug 
delivery. 

4.4. Peptide Hydrogels as Self-Delivery Therapeutic Agents 

 Besides being used as a drug delivery carrier, peptide hydrogels 
can also serve as direct self-delivery therapeutic agents [162]. 
Compared with traditional antibiotics, the anti-inflammatory effects 
of peptides are extremely rapid, and can involve multiple cellular 
targets [163]. Xu et al. synthesized a peptide hydrogel with combi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Assembly of a noncytotoxic injectable peptide-based hydrogel for release of drugs. Adopted from Langmuir. 2014; 30 (3): 929 [151]. 

 

 

 

 

 

 

 

 

Fig. (5). Generation of therapeutic glycopeptide hydrogels as a novel substitute for antiproliferative molecular drugs to retard postoperative scar formation. 

Adopted from J. Mater. Chem.2012; 22:18164 [158]. 
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nation of two N-(fluorenylmethoxycarbonyl) amino acids that dis-
played anti-inflammatory abilities [164]. Xu and co-workers also 
found that covalent bonding of D-amino acids and Naproxen could 
significantly enhance the drug selectivity toward COX-2, while 
maintaining high activity of Naproxen [165]. 

 Self-assembling -hairpin peptides, with high arginine content, 
exhibited extremely good performance in killing bacteria (both 
gram-positive and gram-negative bacteria), for example, Pseudo-
monas aeruginosa with multi-drug resistant property [166] (Fig. 6). 
These hydrogel materials required no addition of antibacterial 
agents, displayed high efficiency against bacteria, and were bio-
compatible with human erythrocytes and mammalian mesenchymal 
stem cells. Studies with rheology demonstrated that the gel shows 
moderately stiff and exhibits shear recovery characteristics, allow-
ing its delivery behavior through simple syringe. He et al. designed 
antimicrobial peptides that showed considerable selectivity for both 
P. aeruginosa and Streptococcus mutants [167]. This effect was 
achieved by combining a nonspecific widespread antimicrobial 
agent, as well as a specifically targeted antimicrobial agent. In addi-
tion, the peptide-based -hairpin hydrogel surface showed excellent 
antibacterial ability. Studies indicated that such peptide hydrogel 
surface is very good at killing both gram-positive and gram-
negative bacteria [168]. Derivatives of the peptide based hydrogel 
system also exhibited strong bacterial extermination abilities [169]. 
Hilpert et al. described a high throughput approach to screen pep-
tides with enhanced antimicrobial abilities in large scale. Such ap-
proach relied on peptide synthesis from a cellulose support, and a 
pseudomonas aeruginosa strain which constitutively expressed 
bacterial luciferase [170]. They generated 12-mer peptides exhibit-
ing a broad-spectrum ability. The minimal inhibitory concentrations 
(MIC) toward Escherichia coli of such peptides was as low as 0.5 
μg/ml. They also designed an 8-mer substituted peptide with broad 
spectrum activity. The 80-mer substituted peptide show strong kill-
ing ability toward E. coli and Staphylococcus aureus at an MIC of 2 
μg/ml. Mygind et al. isolated a plectasin-based peptide antibiotic 
from saprophytic fungus and investigated its therapeutic potential 
[171]. In the test, plectasin exhibited very low toxicity in animal 
models. Additionally, experimental peritonitis and pneumonia due 
to S. pneumonia were cured with such plectasin-based peptide anti-
biotic. These findings open the door to use fungi as a novel source 
of antimicrobial treatments, and also show the therapeutic potential 
of plectasin. Liu et al synthesized an innovatively designed peptide 

made up of two antibacterial peptide sequences as well as a central 
tetrapeptide linker. The peptide hydrogel displayed inherent anti-
bacterial activity against Escherichia coli [172]. Yang et al. created 
a series of novel formyl hydroxyamino derivatives and evaluated 
their antibacterial activities. The in vivo studies confirmed that 
these compounds are mildly toxic, have a good pharmacokinetic 
profile, and protective effects. Therefore, it can be concluded that 
this class of compounds has the potential for use in future antibacte-
rial drugs [173]. Besides the above-mentioned antibacterial applica-
tions, the peptide hydrogels also have been demonstrated to be used 
as wound healing agents and other therapeutic instruments under 
different conditions [174]. 

5. BIOCOMPATIBILITY 

 The formation of hydrogel peptides affect the structure and 
stability of hydrogel peptides which correlated with safety of such 
functional biomaterials. Thus, the safety of hydrogel peptides is 
controlled by physical physiological conditions such as pH, calcium 
ions, temperature, et al. Zarzhitsky et al. pointed that pH played 
important roles in regulating the second structure of charged hydro-
gel [175]. They found that the peptide dissolved in the pH range 4-
9, specially, in the pH range from 7.4-9, the hydrogel peptides un-
folded. Calcium ion could also control hydrogel peptides properties. 
The high calcium ion concentration could cause dissolve of hydro-
gel peptide dissolved and low concentration of calcium ion could 
maintain the stability of hydrogel. Chenite et al. demonstrated that 
gelation became temperature dependent in the pH [176]. Fu et al. 
discussed the role of temperature on morphological transitions of 
hydrogel nanostructures self-assembled by peptide amphiphiles 
using dynamic molecular simulation methods. It was shown that 
with the temperature increase, the -strand percentage is not af-
fected, the -helix percentage decrease first then reach the plain, 
however the random coil percentage increase upon temperature 
then reach the plain [177].  

6. PERSPECTIVES AND CHALLENGES 

 This review article mainly focuses on recent progress in the 
development of the synthesis of functional, biocompatible, self-
assembling peptide nanostructure hydrogels and their specific ap-
plications for drug delivery. Although promising progress has been 
achieved, there are still many challenges and shortcomings of such 
systems. Firstly, the bioactivity of the drug needs to be maintained 

 

 

 

 

 

 

 

 

 

 

Fig. (6). D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). Adopted from J. Am. 

Chem. Soc. 2013; 135 (2): 542 [166]. 
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at high levels in peptide hydrogel hybrid drug delivery systems and 
molecular peptide based hydrogel systems, without compromising 
the activities of the therapeutics. Additionally, the toxicity of pep-
tide-based hydrogels should be evaluated comprehensively, includ-
ing investigations on the cyto/genotoxicities of peptide molecular 
hydrogels therapeutics. Studies should be conducted on specific 
disease models such as the mouse breast cancer model and the rab-
bit ophthalmic disease model. Furthermore, bioresponsive physical 
and chemical triggers that could prompt drug release in vivo or in 
vitro need to be studied intensively. For reasons mentioned above, 
future research on the development and understanding of bioactive 
drug molecular transport through peptide hydrogels, under ‘real’ 
conditions, must be further explored. 
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